
Ultimate precision bounds for the estimation and discrimination of quantum channels [1]

Stefano Pirandola, Cosmo Lupo
York Centre for Quantum Technologies (YCQT), University of York, York YO10 5GH, UK

Quantum metrology deals with the optimal estimation of

physical parameters encoded in quantum states or transforma-

tions. Its applications are many, from enhancing gravitational

wave detectors, to improving frequency standards, clock syn-

chronization and optical resolution. Understanding the ulti-

mate precision limits of quantum metrology is therefore of

paramount importance. However, it is also challenging, be-

cause the most general strategies for quantum parameter esti-

mation exploit adaptive, i.e., feedback-assisted, quantum op-

erations involving an arbitrary number of ancillas [2, 3].

Our goal is to estimate the ultimate precision in the estima-

tion of θ, as given by the quantum Cramér-Rao bound

σ2

θ ≥
1

Fθ(ρnAB
)
,

where Fθ is the quantum Fisher information and ρn
AB

is the

final state after n iterations, see Fig. 1. To solve this problem

we borrow the powerful tool of teleportation stretching from

the field of quantum communication [4]: if the channel Eθ has

a suitable symmetry, its action on any input ρ can be simulated

by local operations and classical communication (LOCC), see

Fig. 2. In this way, the action of the quantum channel on

generic inputs is naturally incorporated in the adaptive esti-

mation protocol, allowing us to derive an upper bound on the

quantum Fisher information and thus on the ultimate preci-

sion for the estimation of the parameter θ. This simulation is

possible for channels that are covariant under the action of the

unitary transformations involved in the teleportation protocol

[5]: examples are the depolarizing and erasure channels, and

the Gaussian channels in bosonic systems.

Together with the upper bound we find a matching lower

bound obtaining a remarkably simple expression for the ulti-

FIG. 1: Schematics for the most general adaptive estimation pro-

tocol. First Alice and Bob prepare an initial state by applying a

quantum map Λ0, then Alice uses part of this state to probe the box,

while Bob gets the corresponding output. Then they apply a collec-

tive quantum operation Λ1, Alice prepares a new input state, and so

on and so forth for n concatenation of this adaptive routine. The state

of Alice and Bob obtained in this way, denoted as ρnAB , it is finally

measured to estimate θ.

FIG. 2: Teleportation allows us to simulate the quantum channel Eθ

with an entangled resource (the Choi-Jamiołkowski state of Eθ) and

LOCC, provided it has the required symmetry.

mate quantum Fisher information:

Fθ(ρ
n

AB) = nFθ(ρEθ
) ,

where ρEθ
is the Choi-Jamiołkowski state associated to Eθ.

This finding shows that the adaptive estimation of noise in a

teleportation-covariant channel cannot beat the standard quan-

tum limit. Our no-go theorem also establishes that this limit

is achievable by using entanglement without adaptiveness.

As an application, we set the ultimate adaptive limit for es-

timating thermal noise in Gaussian channels, which has impli-

cations for continuous-variable quantum key distribution and,

more generally, for measurements of temperature in quasi-

monochromatic bosonic baths. Because our methodology ap-

plies to any functional of quantum states which is monotonic

under completely- positive trace-preserving maps, we are able

to simplify other types of adaptive protocols, including those

for quantum hypothesis testing. Similarly, we find that the ul-

timate error probability for discriminating two teleportation-

covariant channels is reached without adaptiveness and deter-

mined by their Choi-Jamiołkowski states.

Our work not only shows that teleportation is a primitive for

quantum metrology but also provides remarkably simple and

practical results. Setting the ultimate precision limits of noise

estimation and discrimination has broad implications, e.g., in

quantum tomography, imaging, sensing and even for testing

quantum field theories in non-inertial frames.
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