Gaussian states minimize the output entropy of one-mode quantum Gaussian channels

Giacomo De Palma,! Dario Trevisan,? and Vittorio Giovannetti3

YQMATH, Department of Mathematical Sciences, University of Copenhagen, Denmark
2 Universita degli Studi di Pisa, Pisa, Italy
3NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa, Italy

We prove the longstanding conjecture stating that Gaussian thermal input states minimize the
output von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all
the input states with a given entropy. Phase-covariant quantum Gaussian channels model the
attenuation and the noise that affect any electromagnetic signal in the quantum regime. Our result
is crucial to prove the converse theorems for both the triple trade-off region and the capacity region
for broadcast communication of the Gaussian quantum-limited amplifier. Our result extends to the
quantum regime the Entropy Power Inequality that plays a key role in classical information theory.
Our proof exploits a completely new technique based on the recent determination of the p — ¢
norms of the quantum-limited amplifier [De Palma et al., arXiv:1610.09967]. This technique can be

applied to any quantum channel.
Based on arXiv:1610.09970.

Signal attenuation and noise unavoidably affect elec-
tromagnetic communications through metal wires, opti-
cal fibers or free space. Since the energy carried by an
electromagnetic pulse is quantized, quantum effects must
be taken into account [1]. They become relevant for low-
intensity signals, such as for satellite communications,
where the receiver can be reached by only few photons for
each bit of information [2]. In the quantum regime, sig-
nal attenuation and noise are modeled by phase-covariant
quantum Gaussian channels [3-7].

The maximum achievable communication rate of a
channel depends on the minimum noise achievable at its
output, that is quantified by the output von Neumann

entropy [5, 8]. We prove in the case of one mode the long-
standing constrained minimum output entropy (CMOE)
conjecture [9-14] stating that Gaussian thermal input

states minimize the output entropy of phase-covariant
quantum Gaussian channels among all the input states
with a given entropy.

The classical counterpart of the CMOE conjecture
states that Gaussian input probability distributions min-
imize the output Shannon differential entropy of classical
Gaussian channels among all the input probability distri-
butions with a given entropy, and it is implied by the En-
tropy Power Inequality (EPI) [15, 16]. The EPI is funda-
mental in classical information theory. It is necessary to
prove the optimality of Gaussian encodings for the trans-
mission of information through the classical broadcast
and wiretap channels [17, 18], and it provides bounds for
the information capacities of non-Gaussian classical com-
munication channels [19] and for the convergence rate in
the Central Limit Theorem [20]. A quantum generaliza-
tion of the proof of the EPI permits to prove the quantum
EPI (qEPI) | ], that provides a lower bound to the
output von Neumann entropy of quantum Gaussian chan-
nels in terms of the input entropy. However, the qEPI
is not saturated by quantum Gaussian states, hence it is
not sufficient to prove the CMOE conjecture. The MOE

conjecture has first been proven in a completely differ-
ent way in the version stating that pure Gaussian input
states minimize the output entropy of any phase covari-
ant and contravariant quantum Gaussian channel among
all the possible pure and mixed input states [7, 26—29].
This fundamental result has permitted to determine the
classical communication capacity of these channels [30]
and to prove that this capacity is additive under tensor
product, i.e. it is not increased by entangling the inputs
[7]. The CMOE conjecture has then been proven for the
one-mode quantum-limited attenuator [31, 32] using La-
grange multipliers. Unfortunately the same proof does
not work in the presence of amplification or noise.

We prove the CMOE conjecture for any one-mode
phase-covariant quantum Gaussian channel. This result
implies the CMOE conjecture also for one-mode phase-
contravariant quantum Gaussian channels ([33], Section
VI). Our result both extends the EPI to the quantum
regime and generalizes the unconstrained minimum out-
put entropy conjecture of [7, ]. Our result is neces-
sary to prove the converse theorems that guarantee the
optimality of Gaussian encodings for two communication
tasks involving the quantum-limited amplifier [34]. The
first is the triple trade-off coding [35], that allows to si-
multaneously transmit both classical and quantum in-
formation and to generate shared entanglement, or to
simultaneously transmit both public and private classi-
cal information and to generate a shared secret key. The
second is broadcast communication [36, 37], i.e. classical
communication with two receivers.

Our proof exploits a completely new technique that
links the CMOE conjecture to the p — ¢ norms [7, 38],
and is based on the result stating that Gaussian thermal
input states saturate the p — ¢ norms of the one-mode
quantum-limited amplifier [39]. This technique can be
used to determine the minimum output entropy for fixed
input entropy for any quantum channel whose p — ¢
norms are known.
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