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We present a composable security proof, valid against arbitrary attacks and including finite-size effects, for a

high dimensional time-frequency quantum key distribution (TFQKD) protocol based upon spectrally entangled

photons. Such schemes combine the impressive loss tolerance of single-photon QKD with the large alphabets of

continuous variable (CV) schemes, but finite-size security has previously only been proven under the assumption

of collective Gaussian attacks. Here, we derive a composable security proof that predicts key rates on the order

of Mbits/s over metropolitan distances (40 km or less) and maximum transmission distances of up to 140 km.

Most photonic QKD implementations fall into one of two

regimes. Traditional discrete variable (DV) schemes encode

the secret key in a two-dimensional Hilbert space such as the

polarisation of a single photon. Such protocols now enjoy

general, composable security proofs [1] that function with rea-

sonably small finite-size data blocks, and converge to the ideal

Devetak-Winter rates [2] in the asymptotic limit. Continuous

variable (CV) schemes instead utilise an infinite-dimensional

Hilbert space, commonly the quadratures of the optical field.

Whilst the finite range and precision of real-life detectors en-

sures the key is never perfectly continuous, CVQKD never-

theless has the capability to achieve greater than one bit per

transmission and hence potentially much higher rates. Fur-

thermore, composable, general, finite-size CVQKD security

proofs have also appeared, although the present results either

require extremely large block sizes [3], or are very sensitive

to losses [4] and fail to converge to the Devetak-Winter rates.
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FIG. 1: Secret key rate as a function of transmission distance for

protocols where the key is generated from frequency (dashed) or time

(solid) variables. Sample sizes are N = {109, 1010, 1011} in red,

green and blue respectively with a security parameter of 10−10.

An alternative approach is to encode the key in the con-

tinuous degrees of freedom of single photons, inheriting both

the loss tolerance of DVQKD and the larger encoding space

of CV protocols [5]. These time-frequency schemes are pri-

marily pursued via the temporal and spectral correlations of

single photons emitted during spontaneous parametric down

conversion (SPDC) and the security stems from the conjugate

nature of frequency and arrival time measurements. Signifi-

cant progress has been made in security analysis [6], partic-

ularly identifying analogies between the time and frequency

observables of a single photon and the canonical quadrature

observables. However, a general composable security proof is

lacking. In this work we present such a proof by combining

the entropic uncertainty proofs for CVQKD [4] with efficient,

finite-size decoy-state analysis [7] for DVQKD which allows

us to rigorously determine the number of single photon events.

The resultant proofs allow for high rates key rates over urban

and inter-city distances with reasonable block sizes. Detailed

proofs, calculations and simulation parameters can be found

in [8].

Note added: During the writing up of this work the au-

thors became aware of similar results obtained independently

by Niu et al. [9].
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