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In the current absence of full-scale quantum technologies, there has been a concerted effort to prove that a 

quantum advantage exists across a range information protocols from precision measurement, computation and 

simulation to secure communications. Recently an area in which a quantum advantage has been revealed is 

randomness processing which is exemplified in the Bernoulli factory[1]. 

The Bernoulli factory is an algorithm which takes, as an input, a finite sequence of independent and identically 

distributed Bernoulli random variables, or coin flips, with an unknown bias p and then outputs a new function given 

by coin with success probability f(p). An early example, attributed to von Neumann[2], is the generation of a fair 

coin ( ) 0.5=f p  from biased coins for 0 1< <p . The coin is flipped twice, if both outcomes are different output the 

result of the second coin, otherwise repeat. Another example is the case where 2( ) 2 (1 )= −f p p p  for which a heads 

outcome can be simulated when three p coins are tossed and either tails/tails/heads or tails/heads/tails are the 

outcomes, otherwise tails is outputted by the factory. The types of functions simulable by a Bernoulli factory using 

classical coins of unknown bias p was first defined by Keane and O’Brien[1]. A function that cannot be simulated 

classically with finite resources, but which is of great interest as it may lead to the construction of other Bernoulli 

factories[3],  is ( ) 2∧ =f p p .  

Recent developments to the theory by Dale et al.[4] showed that replacing classical coins with quantum coins or 

‘quoins’ of the form 0 1 1= + −p p p  not only relaxes the conditions on which functions can be simulated, 

but also provides a reduction in the number of resources required. Here we report an experimental demonstration of 

the quantum Bernoulli factory by simulating the function ( ) 2∧ =f p p under two scenarios, one which utilises single 

qubit measurements in the X and Z basis[5] and the other which utilises non-classical correlations by performing 

joint measurements of two qubits in the Bell basis[4]. Qubits given by 0 1 1= + −p p p  are encoded in the 

polarisation of single-photons generated from spontaneous parametric downconversion. The exact sequence of 

measurement outcomes is recorded by time-tagging individual detection events. Sampling from the measurement 

outcomes, along with classical post-processing, allows ( )∧f p  to be constructed. For both approaches, we are able to 

achieve (0.5) 0.935∧ =f where we attribute the slight deviation from unity to experimental imperfections. Our 

experiments reveal that for the single-qubit case, ( ) 2∧ =f p p  requires on average 51.6 quoins to construct 

compared to 11.3 quoins in the two-qubit case, demonstrating that non-classical correlations offer almost a five-fold 

reduction in resources over single-qubit measurements alone. Fitting the data with a sum of Bernstein 

polynomials[6] allows us to estimate that ~50000 classical coins would be required to reproduce our data, which 

shows that the quantum Bernoulli factory, with a resource reduction of three orders of magnitude, shows a clear 

quantum advantage over the best known classical algorithm. 
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