Measurement-induced quantum state engineering
and emulation of strong optical nonlinearities

M. Bellini1,2, L.S. Costanzo1,2, N. Biagi1,2, A.S. Coelho3, J. Fiurášek4, A. Zavatta1,2

1Istituto Nazionale di Ottica (INO-CNR), Florence, Italy
2LENS and Department of Physics, University of Firenze, Florence, Italy
3Departamento de Engenharia Mecânica, Universidade Federal do Piauí, Teresina, PI, Brazil
4Department of Optics, Palacky University, Olomouc, Czech Republic

We experimentally perform conditional quantum operations on weak states of light in order to implement highly non-trivial state transformations. Coherently combining sequences of single photon additions and subtractions \cite{1} has recently allowed us to orthogonalize any input light state and to generate coherent superpositions of the input and output states, thus producing arbitrary continuous-variable qubits \cite{2}.

Now we show that appropriate combinations of the above elementary quantum operations can faithfully emulate the effect of a strong Kerr nonlinearity on weak states of light. We experimentally demonstrate a nonlinear phase shift at the single-photon level by using weak coherent states as probes and characterizing the output non-Gaussian states with quantum tomography \cite{3}. The strong nonlinearity is clearly witnessed as a change of sign of specific off-diagonal elements of the density matrix expressed in the basis of Fock states.

Both the generation of arbitrary continuous-variable qubits and the emulation of strong Kerr nonlinearities at the single-photon level represent crucial enabling tools for optical quantum technologies and for advanced quantum information processing.

References

\cite{1} M. Bellini and A. Zavatta, Manipulating light states by single-photon addition and subtraction, \textit{Progress in Optics}, \textbf{55}, 41-83 (2010)